Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice.

نویسندگان

  • Jian Feng Ma
  • Namiki Mitani
  • Sakiko Nagao
  • Saeko Konishi
  • Kazunori Tamai
  • Takashi Iwashita
  • Masahiro Yano
چکیده

Rice (Oryza sativa L. cv Oochikara) is a typical silicon-accumulating plant, but the mechanism responsible for the high silicon uptake by the roots is poorly understood. We characterized the silicon uptake system in rice roots by using a low-silicon rice mutant (lsi1) and wild-type rice. A kinetic study showed that the concentration of silicon in the root symplastic solution increased with increasing silicon concentrations in the external solution but saturated at a higher concentration in both lines. There were no differences in the silicon concentration of the symplastic solution between the wild-type rice and the mutant. The form of soluble silicon in the root, xylem, and leaf identified by (29)Si-NMR was also the same in the two lines. However, the concentration of silicon in the xylem sap was much higher in the wild type than in the mutant. These results indicate that at least two transporters are involved in silicon transport from the external solution to the xylem and that the low-silicon rice mutant is defective in loading silicon into xylem rather than silicon uptake from external solution to cortical cells. To map the responsible gene, we performed a bulked segregant analysis by using both microsatellite and expressed sequence tag-based PCR markers. As a result, the gene was mapped to chromosome 2, flanked by microsatellite marker RM5303 and expressed sequence tag-based PCR marker E60168.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The relationship between Total phytochelat and phytochelat bond with aluminum and silicon and distribution of Si2+ and Al3+ ions in roots and leaves of two Iranian rice cultivars

Phytochelate is a charged compound that is bonded to the elements. For this purpose, in 2012, in the greenhouse of the University of Bu Ali Sina, The  effects of Si2+ and Al3+on total Phytochelate,  Phytochelate bond with  Si2+ and Al3+and distribution of Si2+ and  Al3+ ions in two rice cultivars (Shirudi and Aus) with different resistance to salinity. In this study, 30-day-old seedlings of ric...

متن کامل

Nano-sized Amitriptyline (AT) imprinted polymer particles: Synthesis and characterization in Silicon oil

Amitriptyline hydrochloride is a highly permeable active pharmaceutical ingredient (API). The function of these drugs is to block the reuptake of the neurotransmitters, norepinephrine and serotonin in the central nervous system. The nano-sized Amitriptyline (AT) imprinted polymer particles were synthesized successfully. The nanoparticles were characterized by Fourier transform infrared spectros...

متن کامل

تاثیر منابع و مقادیر مختلف کود سیلیس بر رشد، عملکرد و میزان آلودگی به کرم ساقه خوار در رقم طارم‌هاشمی و لاین 843 در گیاه برنج

Silicon is as an essential element for crops and an important food source for the growth of rice plant. If no adequate replacement for this element, plants are faced with a shortage of silicon causing serious eating disorder and instability in plant resistance to pests. This research was done to investigate the effect of silicon on growth, yield and tolerance to rice stem borer in Tarom Hashemi...

متن کامل

Nano-sized Amitriptyline (AT) imprinted polymer particles: Synthesis and characterization in Silicon oil

Amitriptyline hydrochloride is a highly permeable active pharmaceutical ingredient (API). The function of these drugs is to block the reuptake of the neurotransmitters, norepinephrine and serotonin in the central nervous system. The nano-sized Amitriptyline (AT) imprinted polymer particles were synthesized successfully. The nanoparticles were characterized by Fourier transform infrared spectros...

متن کامل

Synthesis of Three - Dimensional Mesoporous Silicon from Rice Husk via SHS Route

Silicon nanoparticles are the focus of attention thanks to their potentialities in advanced applications such as new batteries, photovoltaic cells and so on. The need to porous silicon is thus rising and will follow the same trend. In this work, highly porous nanostructured silicon is synthesized via Self-propagating high-temperature synthesis (SHS) route. Microstructural and phase analyses sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 136 2  شماره 

صفحات  -

تاریخ انتشار 2004